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An analysis of the quasi-steady streaming of the liquid in a vertically vibrated
horizontal soap film is reported. The air around the soap film is seen to play a variety
of roles: it transmits normal and tangential oscillatory stresses to the film, damps
out Marangoni waves, and forces non-oscillatory deflection of the film and tangential
motion of the liquid. Non-oscillatory volume forcing originating inside the liquid is
also analysed. This forcing dominates the quasi-steady streaming when the excitation
frequency is close to the eigenfrequency of a Marangoni mode of the soap film,
while both volume forcing in the liquid and surface forcing of the gas on the liquid
are important when no Marangoni mode resonates. Different manners by which the
combined forcings can induce quasi-steady streaming motion are discussed and some
numerical simulations of the quasi-steady liquid flow are presented.

1. Introduction
Liquid flow in stationary soap films is essentially two-dimensional owing to the

extremely small thickness of these films. This led Gharib & Derango (1989) and others
to propose that soap film systems may provide a means for experimentally simulating
two-dimensional hydrodynamics. Analysis, however, has shown that the fluid motion
in soap films is much more complex than standard hydrodynamics, due to a number
of peculiar phenomena that include surfactant transport through evaporation, finite
disturbance propagation speeds connected with the not-fully-understood properties
of surfactants, and the possibility of irreversible formation of regions of black film
where the two micelle interfaces come into contact. Studies of the physical properties
and the statics of soap films date back to the pioneering works of Plateau (1873)
and Gibbs (1931), and soap films have received recurrent attention in the literature
ever since, due to their value as a simulating tool and to the richness of their own
dynamics. Vortical motion in thin films, in particular, has been very much studied,
beginning with the work of Couder (1981). Many different types of forcing and flow
configurations have been considered, including laminar and turbulent wakes behind
obstacles or arrays of obstacles in relative motion to the film (Couder 1984; Couder
& Basdevant 1986; Rutgers, Wu & Bhagatula 1996; and Martin, Wu & Goldburg
1998), motions induced in the liquid by the impingement or shear of a surrounding air
stream (Rabaud & Couder 1983; Chomaz et al. 1988), and flows due to the combined
action of gravity and surface tension (Couder, Chomaz & Rabaud 1989). Reviews of
the known physics of soap films and descriptions of the impressive variety of flows
that they can sustain are given by Rusanov & Krotov (1979) and Couder et al. (1989).
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Vibrating soap films were observed by Taylor (1878), who reported coloured
fringe patterns and steady vortical motions in films excited by sound waves, and by
Bergmann (1956), who obtained very clean photographs of a film excited by a loud-
speaker and subject to rotation to make its thickness uniform. More quantitative
experiments were carried out by Airiau (1986) and Afenchenko et al. (1998) using
different excitation devices. In both of these experiments the frame holding the film
was rigidly and symmetrically attached to the lateral walls of a cavity, in order to
reduce evaporation and contamination of the film, and shield the film from external
disturbances. In the experiments of Airiau the excitation was provided by a loud-
speaker fitted to the bottom of the cavity, which was otherwise open. It was observed
that the mode of the film excited by the loudspeaker depends on the frequency, and
that in narrow transition ranges where two modes coexist with comparable amplitude,
their phases are different and shift with changing frequency. Liquid accumulates in
the crests of the modes a short time after starting the vibration, and this leads to the
accumulation of interference fringes when the film is illuminated with monochromatic
light. Recirculation of the liquid begins shortly afterwards in the regions of small
thickness surrounding the crests, where patches of black film are eventually formed.
The migration of liquid toward the crests was explained as a secondary motion due
to surface tension forces.

The cavity containing the soap film in the experiments of Afenchenko et al.
(1998) was closed and mounted on an electro-mechanical vibrator. While this setup
minimizes evaporation and unwanted disturbances, it leads to some uncertainty as
to the excitation mechanism. These authors concluded that the strength of vor-
tices in a given vortex pattern increases with increasing external forcing and with
decreasing film thickness. In their visualizations, initially thick films produced in-
coherent light interference which provided shadowgraph images of the planform
structure of transverse oscillations, while organized interference patterns, consist-
ing of coloured fringes, appeared when the film thinned by evaporation. Vortex
motion was observed in regions of low fringe density, which is where the film
is thinnest, and these regions coexist with ‘bladders’ of much larger thickness. A
theoretical description of the vortical motion was proposed based on the assump-
tion of viscous diffusion from the perimeter of the film, where standard results on
steady streaming generated by relative oscillatory motion between a fluid and its
solid boundary (see, for example, Schlichting 1951 and the recent review by Riley
1997) were supposed to be applicable to the Stokes layer associated with Marangoni
waves in the liquid. Afenchenko et al. (1998) recognized, however, that this diffu-
sive model could not explain the spontaneous appearance, at the film’s interior, of
vortices pinned to specific points on the planform pattern of flexural mode vibra-
tions.

In this paper a systematic qualitative analysis is presented of the generation of
steady or quasi-steady vortical motions in vertically vibrated horizontal films. As we
shall see, the air surrounding the film plays an important role in typical experimental
conditions (a fact already pointed out by Airiau 1986) and this will make the analysis
somewhat involved. For the sake of clarity, we restrict ourselves to the case when the
oscillating flows in the air and the liquid obey linear problems and are decoupled from
the quasi-steady motions. Some of the complex behaviours observed by Afenchenko
et al. (1998) are thereby excluded from the analysis.

The problem is formulated in § 2. Equations governing the leading-order oscillatory
flow both in the air and in the liquid, and the leading-order quasi-steady non-
oscillatory flow in the liquid are set forth in § 3. Numerical solutions exhibiting some
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of the vibration-induced vortex motions in the film are presented in § 4 and concluding
remarks are given in § 5.

2. Problem formulation
Consider a thin soap film of thickness e stretched on a plane, horizontal frame.

The film is forced to oscillate vertically with frequency ω, either by a vibration of the
frame, as in the experiment of Afenchenko et al. (1998), or of the surrounding air,
whose motion can be due to the vibration of a nearby solid, as in the experiment
of Airiau (1986), or to an acoustic wave impinging on the film, as in the early
observations of Taylor (1878). The oscillations of both the air and the liquid are
assumed to be essentially linear and monochromatic which, according to the ensuing
analysis, is justified if the amplitude of the excitation is sufficiently small and higher-
order harmonics of integer multiples of ω do not resonate. Liquid evaporation and
the formation of black film are not accounted for in the analysis.

The motion of the air around the film obeys the incompressible continuity and
Navier–Stokes equations with no-slip conditions at the surfaces of the film and either
no-slip conditions at the vibrating or stationary solid walls bounding the film and
the surrounding air, or conditions of zero velocity far away from the film and the
source of the oscillations if they are not fully enclosed by solid walls. An exception
to this latter condition is when the oscillation of the film is forced by an acoustic
wave propagating in the air, in which case the flow far from the film is that of the
oncoming wave plus the waves reflected and transmitted by the film. In any event,
the oscillatory motion of the air and the associated oscillatory deflection of the film
can be straightforwardly calculated, at least in principle, and their effect on the liquid
phase, leading to the generation of steady or quasi-steady structures inside the film,
may then be analysed.

In order to formulate the problem in the liquid phase let x = (x, y) be Cartesian
coordinates in the plane of the unperturbed film, ∇ = (∂/∂x, ∂/∂y) the corresponding
horizontal gradient operator, v = (u, v) the horizontal coordinate velocities of the
liquid averaged across the film, and z the distance from the centreplane of the
unperturbed film. The deflection and thickness of the film, f(x, t) and e(x, t), are
defined such that the interfaces lie at z = f ± e/2 and will be supposed to satisfy
e � f � l, where l is the characteristic length of the flow along the film. To an
approximation sufficient for our purposes, the continuity and momentum equations
describing the motion of the liquid are

∂e

∂t
+ ∇ · (ev) = 0, (2.1)

e
∂v

∂t
+ ev · ∇v =

2

ρ
∇σ − e

(
∂2f

∂t2
+ g

)
∇f +

1

ρ
∇ · τ′ + 2ν∇(e∇ · v) +

1

ρ
τ g, (2.2)

and

ρe

(
∂2f

∂t2
+ g + 2v · ∇∂f

∂t

)
= 2σ∇2f − ∆pg. (2.3)

The subscript g is attached to stresses produced on the film by the gas phase. The
surface tension coefficient σ is a function of the local surface concentration of soap,
which in turn depends only on the local thickness e of the film if the concentration
is initially uniform; see Rusanov & Krotov (1979) and Couder et al. (1989). In (2.2),
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(∂2f/∂t2+g)∇f is the projection of the vertical acceleration of the liquid on the tangent
to the film, with g the gravitational acceleration; τ′ij = ρ(eν + νs)(∂vi/∂xj + ∂vj/∂xi)
is the overall viscous stress tensor containing contributions from the bulk liquid and
its interfaces, with respective viscosities ρν and ρνs (see Rusanov & Krotov 1979 and
Couder et al. 1989); 2ν∇(e∇ · v) is the gradient of the pressure variation appearing in
the liquid to balance the normal viscous stress associated with the straining of the
film (see Jenkins & Dysthe 1997); and τ g is the sum of the shear stresses of the air on
both sides of the film. The term 2v · ∇∂f/∂t in (2.3) is a Coriolis-like acceleration due
to the local rotation of the film, and ∆pg = p+

g − p−g is the difference of air pressures
above and below the film.

Equations (2.1) and (2.2) resemble the continuity and momentum equations of a gas
of bulk viscosity 8

3
eν, with e and −2σ(e)/ρ playing the roles of density and pressure,

and a = [−2(dσ/de)/ρ]1/2 playing the role of the speed of sound. In what follows
the ‘relation of barotropy’ σ = σ0 − ce/(e + k), where σ0, c and k are constants, will
be used. This relation is valid for dilute soap solutions, with concentrations smaller
than the critical micelles concentration, and oscillation periods shorter than the bulk-
surface thermodynamic relaxation time; again see Couder et al. (1989) and Rusanov
& Krotov (1979) for details. Typical values are k ≈ 8 µm and a ≈ 1–10 m s−1.

Equations (2.1)–(2.3) can be derived by writing their fully three-dimensional coun-
terparts in a curvilinear coordinate system attached to the film and averaging across
the film or, equivalently, by establishing the mass and momentum balances for a
control volume bounded by the interfaces and the cross-section along a closed curve.
In either way, both the averaging process and the projection on the horizontal plane
lead to further terms of order |∇f|2 + (e/l)2 � 1 relative to the ones displayed.
Other small effects neglected in (2.2) are the pressure gradient tangent to the film, the
difference of surface tension forces between the two interfaces, and some small terms
associated with the curvature of the film. Finally, the gas viscous stresses normal to
the interfaces have been left out of (2.3).

The velocity and pressure in the air and the deflection of the film will be decomposed
into oscillatory and non-oscillatory parts as

(vg, wg, pg) = (V g,Wg, Pg) eiωt + cc + (vgs, wgs, pgs) + HOH,

f = F eiωt + cc + fs + HOH,

}
(2.4)

where complex notation is used, with cc denoting complex conjugate, and HOH means
higher-order harmonics at integer multiples of ω, which will be assumed to be small
compared to the leading oscillatory term. The subscript s denotes a non-oscillatory
flow component. The horizontal and vertical gas-phase velocity components are vg
and wg , and the gas-phase pressure is pg . V g , Wg , Pg and vgs, wgs, pgs depend on x
and z, and F and fs depend on x only. These quantities also may depend on time,
in a characteristic time scale much larger than ω−1, and consequently these terms are
described as being quasi-steady or non-oscillatory throughout the paper. Similarly,
the thickness of the film and the liquid velocity are decomposed as

e = E eiωt + cc + es + HOH,

v = V eiωt + cc + vs + HOH,

}
(2.5)

with the same notation as above. Again the quantities on the right-hand sides depend
on x and are allowed to vary slowly with time.
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3. Analysis
The linear problems describing the leading oscillatory flows in the air and in the

liquid, and the equations governing the quasi-steady, non-oscillatory flow in the liquid
will be derived in § 3.1 and § 3.2, respectively. The range of non-oscillatory flow
regimes encompassed by these latter equations will be discussed in § 3.3. We have not
introduced a particular scaling at this point because of the numerous characteristic
length and time scales involved in the problem, some of which span several orders
of magnitude in realistic experimental conditions. This makes the analysis somewhat
subtle, but inconsistencies will be avoided by carefully ensuring, at each step, that
neglected terms are in fact small compared to those retained, under assumptions
that will be invoked when needed. After appropriate scalings are introduced in the
equations derived below, several dimensionless parameters will appear in a natural
way.

3.1. Oscillatory flow

Consider first the leading oscillatory terms of expansions (2.4) and (2.5). These terms
satisfy the linearized forms of the continuity and momentum equations in the air, the
linearized forms of equations (2.1) and (2.2) in the liquid, and of equation (2.3) across
the film, as well as conditions of continuity of the velocity at the film surfaces. In
what follows all these equations will be linearized around the quiescent state, which
is admissible if the conditions ω|F | + |vsg| + |wsg| � ωl and |V | + |vs| � ωl are
satisfied.

The linearized problem in the air can be simplified in the realistic case ωl2 � νg ,
for which the effect of the air viscosity is confined to Stokes layers of characteristic
thickness δ = (νg/ω)1/2 � l on both sides of the film and on the solid walls. If, in
addition, the thickness of the film is sufficiently small (recall that e � l), then the
oscillations of the film and the air outside the Stokes layers obey

∇ · V g +
∂Wg

∂z
= 0, (3.1)

iρgωV g = −∇Pg, (3.2)

iρgωWg = −∂Pg
∂z

, (3.3)

W±
g = iωF, (3.4a)

P+
g − P−g = ρesω

2F + 2σs∇2F, (3.4b)
z = 0 :

{
plus the inviscid conditions (V g,Wg) · n = Vwall at a solid wall vibrating with velocity
Vwall exp(iωt)+cc in the direction of its normal n, and (V g,Wg, Pg)→ 0 as (x, z)→∞,
if the film is not enclosed by solid walls. Here the superscripts ± denote conditions
above and below the film. The two terms on the right hand side of boundary
condition (3.4b) reflect the influence of the film on the oscillations of the air through
the inertia of the liquid and the surface tension of the interfaces, respectively.

Equations (3.2) or (3.3) along with (3.4a) yield the estimate Pg = O(ρgω
2|F |l) and,

consequently, ρesω
2F/Pg = O(ρe/ρgl) and 2σs∇2F/Pg = O(σ/ρgω

2l3). For typical
values of the magnitudes involved (namely ρ/ρg ≈ 103, l ∼ 1–5 cm, σ ∼ 20–60 dyn
cm−1 and ω/2π ∼ 30–100 Hz), the first of these ratios ranges from order one for
thick films (e > 10 µm) to small values, and the second ratio is of order one. Thus the
inertia of the liquid never dominates over that of the air, and hence the air cannot be
ignored in the analysis of the oscillations.
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Once V±g is known from the solution of the inviscid gas-phase problem, the
oscillatory flow in the Stokes layers can be determined. In terms of the distances to
the interfaces, η = z − (f ± e/2), the horizontal oscillatory velocities of the air in the
layers above and below the film are

{V±g +
(
V − V±g

)
exp(∓

√
iη/δ)}eiωt + cc, (3.5)

where V ±g = V g(x, y, 0
±) and, as defined above, δ = (νg/ω)1/2.

Problem (3.1)–(3.4) with homogeneous boundary conditions at the solid walls
determines the flexural modes of the air–film system for which the balance of the
inertia of the liquid and the air with the restoring surface tension force yields the
estimate ω2l2 = O[2σ/(ρe + ρgl)]; see Couder et al. (1989) and Taylor (1959). The
damping rate of a flexural mode of frequency ω due to viscous dissipation in the
Stokes layers is γ

F
= O(ωδ/l), which is also the order of the frequency window of

linear resonance. Thus the characteristic amplitudes of the oscillation (A = max |F |,
say) and of the forcing (A0 = max |Vwall |/ω) satisfy A = O(A0ω/γF ) if the difference
between the forcing frequency and the frequency of a flexural mode is of order γ

F
,

and A = O(A0) otherwise.

Equations (3.1)–(3.4) are invariant under the symmetry transformation z → −z,
V g → −V g , Pg → −Pg . If the boundary conditions are also invariant under this
transformation (as is the case in the experiment of Afenchenko et al. 1998) then the
solution is invariant. This means that non-degenerate flexural modes are invariant
under the above transformation if the container and far-field boundaries are symmetric
in z. As a consequence, the solution in the resonant case when the forcing frequency
is close to an inviscid eigenfrequency is, to a first approximation, invariant under this
transformation even if the forcing device is not symmetric. A similar discussion is
applicable to the transformation z → −z, Wg → −Wg , F → −F , which also leaves
equations (3.1)–(3.4) invariant. Now, however, invariance of a solution under this
second transformation implies that F ≡ 0, a condition that no flexural mode can
fulfil.

We note for future reference that the solution of (3.1)–(3.4) is a wave with a
spatially uniform phase unless (a) there is more than a single forcing device (e.g. more
than one vibrating wall) with phase shifts different from 0 and π and their frequency
is not close to any eigenfrequency of the system, or (b) the forcing frequency is close
to that of a degenerate or nearly degenerate eigenmode.

The linearized forms of equations (2.1) and (2.2), determining V and E (cf. (2.5)),
are

iωE + ∇ · (esV ) = 0, (3.6a)

iωesV = −∇
(
a2
sE
)

+
T g

ρ
+ ω2es(∇fs)F − ges∇F, (3.6b)

where a2
s = a2(es) = −2[dσ(es)/des]/ρ and T ge

iωt + cc, with T g =
√

i(ρgνg/δ)(V+
g +

V−g −2V ), is the oscillatory viscous stress of the gas on both sides of the film. Viscous

terms, of order (ν + νs/e)/ωl2 relative to the inertial terms, have been left out of
equation (3.6b). A term −gE∇fs has been also omitted in the right-hand side of
this equation because we are assuming that g|∇fs| � a2

s /l, which is usually the case
in practice. For the same reason, a term −ρgE was omitted in the right-hand side
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of linearized boundary condition (3.4b). From equation (3.6a) the relative thickness
variation is E/es = O(|V |/ωl) � 1. Elimination of E from the latter two equations
and substitution of T g yields

iωesV −
1

iω
∇
[
a2
s∇ · (esV )

]
+ 2
√

i
ρg

ρ

νg

δ
V

=
√

i
ρg

ρ

νg

δ
(V+

g + V−g ) + ω2es(∇fs)F − ges∇F, (3.7)

to be solved with appropriate conditions around the perimeter of the film, dependent
on the mode of attachment of the film to its support frame.

The operator acting on V in the left-hand side of (3.7) describes the Marangoni
waves in the film which owe their existence to spatial variations of surface tension
with film thickness. The phase speed of these waves is as in the absence of damping.
The third term on the left-hand side represents the damping by dissipation in the
Stokes layers that the Marangoni waves generate in the air. The damping rate of
waves of frequency ω is γ

M
= Rω/

√
2, where R = (ρgδ)/(ρec) is the ratio of the mass

of air in the Stokes layers to the mass of liquid in the film when ec is the characteristic
value of the film thickness. This ratio is moderately small for typical frequencies, in
the range 30–100 Hz, and for all but very thin films less than 0.1 µm. If the forcing
frequency differs by an amount of order γ

M
from the frequency of a Marangoni mode

then (3.7) gives |V | = O
{
|V+

g + V−g |+ |∇fs||V±g |/R + g|V±g |/(ω2lR)
}

; otherwise |V |
is R times smaller. It is also worth noting that flexural and Marangoni modes may
resonate simultaneously for some forcing frequencies, because the phase speeds of the
two kinds of waves are of the same order and some of the resonances are not very
narrow.

The three terms on the right-hand side of (3.7) reflect the excitation of Marangoni
waves by flexural oscillations of the air and the film. In the order given, these terms
represent the viscous tangential stress of the gas on the interfaces, the projection of
the vertical oscillatory acceleration of the liquid on the time-averaged, quasi-steady
film, and the projection of the gravitational acceleration on the oscillatory film,
respectively. The ratios of the second and third terms to the first one, of orders
|∇fs|/R and g/(ω2lR), are frequently small except for thick films and low frequencies.
These two terms, however, provide the only mechanism forcing Marangoni waves in
the symmetric case V+

g + V−g = 0.

3.2. Quasi-steady streaming flow

We turn now to the non-oscillatory terms of expansions (2.4) and (2.5), which are due
to the nonlinearity of the governing equations and will be denoted by a subscript s.
Consider first the gas phase, where the only nonlinear terms are the convective terms
of the momentum equations. Outside the Stokes layers the leading-order oscillatory
velocity is potential, and so are the convective terms when evaluated with this velocity,
leading only to the non-oscillatory pressure variation ∆pgs = −ρg(|V g|2 + |Wg|2).
Then the non-oscillatory pressures in the gas just above and below the film are
p±gs = −ρg

(
|V±g |2 +ω2|F |2

)
− ρggfs in the first approximation. Substituting this result

into (2.3) and collecting non-oscillatory terms yields

2σ∇2fs = −ρg
(
|V+

g |2 − |V−g |2
)
− ρges − ρω

[
iF̄∇ · (esV ) + 2iesV · ∇F̄ + cc

]
, (3.8)

where, as above, V±g = V g(x, y, 0
±), with V g given by the solution of (3.1)–(3.4), and
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E has been eliminated using equation (3.6a). In (3.8) and hereafter an overbar denotes
complex conjugate. The pressure variation across the Stokes layers above and below
the film have been omitted since they are R times the pressure variation in the liquid
across the film, as given by the last two terms on the right-hand side of (3.8), which
themselves come from the last two terms on the left-hand side of (2.3). This simplifi-
cation is valid if R is small, which happens for all but very thin films as noted in the
discussion following (3.7). Even for such thin films, the simplification is valid because
the pressure variation in the liquid across the film and the omitted term can be
neglected altogether.

Consider next the quasi-steady streaming of the liquid. Non-oscillatory forcing
terms appear in the momentum equation (2.2) due to the tangential stress of the gas
on the interfaces, τ g , and to the nonlinear terms of this equation involving products
of quantities pertaining to the liquid film. These two types of forcing will be discussed
in turn.

In order to evaluate the non-oscillatory part of τ g/ρ the motion of the air inside
and outside the Stokes layers surrounding the film must be analysed separately. Inside
these layers, where oscillatory vorticity parallel to the interfaces exists, the oscillatory
vertical velocity, obtained from the continuity equation, is{

iωF − ∇(fs ± es/2) ·
[
V±g + (V − V±g ) exp(∓

√
iη/δ)

]
−∇ · V±g η ±

δ√
i

[
exp(∓

√
iη/δ)− 1

]
∇ · (V − V±g )

}
eiωt + cc,

where η = z − (f ± e/2), as above, and use has been made of expression (3.5) for the
horizontal oscillatory velocity.

Using this result, the variation of the tangential stress across each Stokes layer
can be computed by writing the gas momentum equation in the variables x and η,
collecting non-oscillatory terms, and integrating the resulting expressions across the
layers. The result is, after some algebra,

∆τ±gs ≡ ρgνg

[(
∂ṽgs
∂η

)
η=0±
−
(
∂ṽgs
∂η

)
η=±∞

]

= ±ρgδ√
2

[V̄
±
g · ∇(V̄

±
g + iV )− V̄ · ∇(iV±g + V ) + (V̄

±
g − V̄ )∇ · (iV±g + V ) + cc, ]

where ṽgs = ṽgs(x, η, t) is the horizontal non-oscillatory velocity in the Stokes layers.

Outside the Stokes layers, recalling that vgs = vgs(x, z, t) is the non-oscillatory
air velocity, we have (∂vgs/∂z)z=0± = (∂ṽgs/∂η)η=±∞ −

[
(∂2V g/∂z

2)F̄ + cc
]
z=0±

,
the latter term of which is of the order of |∆τ gs|δ/(lρgνg), with ∆τ gs = ∆τ+

gs − ∆τ−gs.
Therefore, the non-oscillatory stress acting on the film is τ gs = τ gs0 + ∆τ gs,
where

τ gs0 = ρgνg

[(
∂vgs
∂z

)
z=0+

−
(
∂vgs
∂z

)
z=0−

]
(3.9)

is the sum of the non-oscillatory viscous stresses at the outer edges of the Stokes
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layers. In what follows the decomposition G ≡ τ gs/ρ = τ gs0/ρ+ G1 + G2 + G3, with

G1 =
δ√
2

ρg

ρ

[
iV̄

+

g (∇ · V+
g ) + iV−g (∇ · V̄−g ) + cc + 2∇(|V+

g |2 + |V−g |2)
]
,

G2 =
δ√
2

ρg

ρ

[
i(V̄

+

g + V̄
−
g ) · ∇V − iV̄ · ∇(V+

g + V−g ) + (V+
g + V−g )(∇ · V )

− iV̄∇ · (V +
g + V−g ) + cc

]
,

G3 =− δ√
2

ρg

ρ

[
V̄ · ∇V + V̄ (∇ · V ) + cc

]


(3.10)

will be used. Here we have taken into account that V±g derives from a potential.
Notice that the first two terms in the expression for G1 vanish if the oscillatory flow
in the bulk has a spatially uniform phase, as we shall assume in what follows for
simplicity. Also, G2 identically vanishes in the symmetric case for which V+

g +V−g = 0.
A number of non-oscillatory contributions arise from time averaging the nonlinear

terms in the momentum equation for the liquid (2.2). Leaving out the contributions
of the viscous terms, which are generally small, the leading-order terms are

L1 ≡
〈
−e∂

2f

∂t2
∇f
〉

= esω
2F∇F̄ + cc,

L2 ≡ 〈ev · ∇v〉 = esV · ∇V̄ + cc,

L3 ≡
〈
e
∂v

∂t

〉
= iωEV̄ + cc = −V̄∇ · (esV ) + cc,


(3.11)

where angular brackets denote time averages over an oscillation period. Here L1, due
to the projection of the vertical oscillatory acceleration of the liquid on the oscillatory
film, is related to the surface tension force invoked by Airiau (1986) to explain the
accumulation of liquid in the crests of the waves. The interpretations in terms of
surface tension and of liquid acceleration are equivalent if the effect of the air is
neglected.

With L = L1 + L2 + L3, the equations governing the quasi-steady streaming in the
liquid are

∂es

∂t
+ ∇ · (esvs) = 0, (3.12a)

es
∂vs

∂t
+ esvs · ∇vs = −a2

s∇es +
1

ρ
∇ · τ′s + 2ν∇(es∇ · vs) + G + L. (3.12b)

In summary, the non-oscillatory evolution of the deflection and thickness of the
film, fs and es, and of the liquid velocity, vs, is given by equations (3.8) and (3.12).
Here V should be obtained from (3.7) and V g and F from (3.1)–(3.4) (plus boundary
conditions), while τ gs0 depends on the non-oscillatory air flow outside the Stokes
layers, which will be discussed below briefly. In addition, (3.8) and (3.12) must be
supplemented with appropriate initial and boundary conditions, which depend on the
mode of film attachment to the frame and will not be discussed here.

Consider now the limits of validity of the analysis leading to (3.8) and (3.12). A
detailed scrutiny of neglected terms shows that these limits are

|vs|+ |V g|+ |V | � ωl,
|V |2
ωl
� |vs|,

(
R + R1/2

) |V g|2
ωl

� |vs|, (3.13)
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where again R = (ρgδ)/(ρec). The first limit comes from neglecting convective terms in
the linear approximations (3.1)–(3.4) and (3.7), as previously noted. Convective terms
should be added to these linear problems if |vs| = O(ωl) or larger, while the oscillatory
motions of the air or the liquid become fully nonlinear if |V g| = O(ωl) or |V | = O(ωl).
The other two conditions, establishing lower bounds on |vs|, stem from requiring that
the largest neglected terms in the expressions for L and G be small compared to the
convective terms in equation (3.12b). The first of these conditions is a consequence of
neglecting, in L2 and L3, terms of the type Ē (vs·∇V+V ·∇vs)+es (V 1·∇V̄+V̄ ·∇V 1)+cc,
where V 1 is the second approximation to the oscillatory flow in the liquid, of order
|V ||vs|/(ωl). The second lower bound on |vs| is the result of neglecting similar terms
in the Stokes layers.

The non-oscillatory three-dimensional flow of the air outside the Stokes layers
should be computed in order to determine τ gs0. We now estimate the order of this
term and the condition under which its effect can be neglected in (3.12). The non-
oscillatory air flow is driven by the quasi-steady velocities extant at the outer edges
of the Stokes layers on the solid walls and on the film. These velocities are of orders
|V g|2/(ωl) and |vs| + |V g|2/(ωl), respectively, and typically lead to a high Reynolds
number gas flow with non-oscillatory boundary layers on the walls and on the
film. The latter have a thickness of order [|vs|+ |V g|2/(ωl)]−1/2(νgl)

1/2, and therefore

τ gs0 = O{ρgν1/2
g [|vs| + |V g|2/(ωl)]3/2/l1/2}. This term can be neglected relative to the

convective terms in (3.12) when

R2ωl + R1/2 |V g|3/2
(ωl)1/2

� |vs|. (3.14)

This condition is compatible with (3.13) only if the parameter R is small. The effect
of τ gs0 cannot be neglected when R is of order unity, which happens for sufficiently
thin films, of the order of 0.1 µm. Experimentally it is observed that thin films
display interesting features which could well be explained by this effect. However,
τ gs0 depends on the presence and location of the walls, and thus such features are
somewhat peripheral to the main theme of our work. Consequently, we shall focus
on the case when (3.14) is satisfied and the effect of the outer non-oscillatory gas flow
can be neglected.

3.3. Orders of magnitude and discussion

Granted that (3.13) and (3.14) are satisfied, the following remarks can be made. First,
inspection of (3.10) and (3.11) immediately shows that G1 = O(ecR|V g|2/l), G2 =
O(ecR|V g||V |/l), G3 = O(ecR|V |2/l), and L1 = O(ec|V g|2/l), (L2,L3) = O(ec|V |2/l).
Here use has been made of the relation ω|F | = O(|V g|) in the estimate of L1 and ec
is the characteristic value of the film thickness, as mentioned before, while ac = a(ec)
will be used below as the characteristic speed of the Marangoni waves. Since R is
small, G1 is smaller than L1, and G3 is smaller than L2 and L3. Second, both G1

and L1/es are gradients of scalar functions if the oscillatory gas flow has a spatially
uniform phase, as we are assuming here. Third, some asymmetry is necessary to excite
Marangoni waves in the liquid, because fs = 0 and V = 0 in the purely symmetric
case when V+

g + V−g = 0 and gravity is neglected (cf. (3.7) and (3.8)).
Two cases arise depending on the amplitude of the oscillations of the gas:
(A) Assume first that |V g| � ac, which in the realistic case ωl = O(ac) amounts

to |V g| � ωl, as required in (3.13). The balance of the largest forcing terms, of
order ec(|V g|2 + |V |2)/l, with the Marangoni force −a2

s∇es in (3.12) yields ∆es/es =
O
[(
|V g|2 + |V |2

)
/a2

c

]
, where ∆es is the non-oscillatory thickness variation due to
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the motion of the liquid. The order of magnitude of V , which was obtained in
the paragraph following equation (3.7), depends on whether a Marangoni mode
resonates and on the order of |∇fs| + g/(ω2l), but in most cases V � ac, and
therefore, ∆es/es � 1. This implies that, in the absence of mechanisms to vary the
film thickness other than the non-oscillatory motion of the liquid, es can be replaced
by a constant everywhere in (3.12) except in ∇es appearing in the Marangoni term,
and these equations then reduce to those describing the two-dimensional motion of
an incompressible fluid.

Experiments (Airiau 1986; Afenchenko et al. 1998), however, show that large spatial
variations of thickness often exist in vibrating films displaying vortical motion. These
variations may be initially present or may be generated by differential soap–water
evaporation in the presence of air streaming, or by other causes (see also case B
below). Insofar as the thickness variations are not due directly to the non-oscillatory
motion of the liquid, the time derivative in equation (3.12a) can be neglected, which
amounts to eliminating acoustics from the non-oscillatory flow. A possible additional
complication brought about by the mechanism leading to thickness non-uniformities
is that it may also change the surfactant concentration in such a way that σs and as
are not only functions of es but depend explicitly on x, a possibility not accounted
for in the present formulation.

The order of magnitude of |vs| depends on whether a Marangoni mode resonates
or not. The two cases are now discussed in turn.

(A.1) If ω is close to a Marangoni eigenfrequency then |V | is of the order of |V g|,
or even larger than |V g| if |∇fs| + g/(ω2l) � R, which may happen for thick films.
In this case V is a Marangoni eigenfunction in the first approximation, which can
be written as V = e−1

s ∇Φ for some potential Φ. Since R is small, the largest forcing
terms, of order ec(|V |2 + |V g|2)/l, come from L which can be written as

L = es
[
ω2∇(|F |2) + e−2

s ∇(|∇Φ|2)−
(
e−2
s (∇2Φ)∇Φ̄+ cc

)]
− 2|Φx + Φy|2e−2

s ∇es. (3.15)

This forcing would derive from a potential if es were strictly uniform. Then it could
be absorbed into the Marangoni term and would not lead to any motion of the liquid.
The flow in this case, therefore, is closely associated with thickness non-uniformities.
If the only non-uniformities are due to the non-oscillatory motion of the liquid,
substitution of (3.15) into (3.12b) yields |vs| = 0

{
(|V |2 + |V g|2)/ac

}
. If ∆es/es = O(1),

on the other hand, much larger velocities, of order |V | + |V g|, are generated. This
difference may explain the noticeable motion observed by Afenchenko et al. (1998)
around regions of black film, where es is small and rapidly increasing away from such
regions.

(A.2) If no Marangoni mode resonates then the estimate of |V | in the paragraph
following equation (3.7) implies that |V | � |V g|, provided that g � ω2l, as is the case
in most experiments. For these conditions |L1| � (|L2|, |L3|) and |G1| � |G2| � |G3|.
The largest forcing term in (3.12b) is L1, but it can be absorbed into the Marangoni
term and does not lead to any motion of the liquid. The next largest forcing terms
not given by the gradient of a potential are G2 and L3, and their sum generates a
non-oscillatory motion in the film with velocity |vs| = O

{
|V |+ (R|V ||V g|)1/2

}
, where

|V | = 0
{
R|V +

g + V−g |+ [|∇fs|+ g/(ω2l)]|V g|
}

, with fs as given by equation (3.8).
Notice that this motion does not rely on thickness non-uniformities, and that it is
fairly weak, such that |vs| � |V g| � ac. (Recall that the present analysis breaks down
if the consistency requirements (3.13) and (3.14) are violated.)

The reason neither G2 nor L3 can be derived from a potential may be worth
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mentioning here. Equation (3.7) shows that even if V = ∇Φ for some potential Φ,
which would be the case if the second term on the right-hand side of this equation
were neglected and es and as are constant, that potential is not proportional to its
own Laplacian because neither F nor the potential of V+

g +V−g (when V+
g +V−g 6= 0)

satisfy this condition for a film of finite size. As can be verified using (3.10) and (3.11),
this prevents G2 and L3 from being potential.

(B) Assume now that |V g| 6� ac, which in the framework of the present weakly
nonlinear analysis can happen only if ωl is somewhat larger than a, rendering
Marangoni modes difficult to excite. The forcing L1 leads to ∆es/es = O(1) but does
not generate any motion by itself. The terms L2 and L3 would be much larger than
G if a Marangoni mode could still resonate, leading to |vs| = O(ac), a condition
apparently never observed experimentally. If there are no resonances, then L2 and L3

are likely to be smaller than the potential part of G, so at leading order the forcing
in (3.12) is of the form es∇ΦL

+ ∇Φ
G
, where Φ

L
= ω2|F |2 = O(|V g|2) (from L1) and

Φ
G

= (
√

2δρg/ρ)(|V+
g |2 + |V−g |2) = O(ecR|V g|2) � esΦL

(from G1). This combination
of volume and surface potential forcing cannot be absorbed by a Marangoni force
alone if Φ

L
and Φ

G
are not functions of each other, and leads to |vs| = O(R1/2|V g|).

The mechanism of volume plus surface potential forcing also exists for small values
of |V g|/ac. Then each of the forcing terms can be separately absorbed into small
changes of thickness ∆es, but these changes lead to the small term ∆es∇ΦL

, which,
though formally of higher order in expansions (2.4) and (2.5), can still induce an
observable motion in the liquid, along with other higher-order terms not included
in (3.11).

4. Numerical solutions
Numerical solutions of (3.12) are now presented and discussed. These computations

are not intended to reproduce the results of any specific experiment, but to generate
insight into the type of flows allowed by (3.12) with typical forcing terms. Such
an approach permits a number of simplifications. First, equations (3.12) are solved
with periodic boundary conditions, which at best amounts to describing the flow
in a limited region of the film away from the frame. This is possible, in principle,
because the forcing described in the previous section acts on the whole film, so that
the quasi-steady streaming need not be dominated by boundary effects. Moreover,
any other boundary condition, reckoning the finite extent of the film, would require
an analysis of the flow in the vicinity of the frame, which is both complicated and
problem dependent. Second, simplified forms of G and L will be used instead of the
full expressions (3.10) and (3.11). Again, evaluation of (3.10) and (3.11) would require
knowledge of the oscillatory fields, which depend on the geometrical configuration
of the frame and the cavity and on details of the mechanism used to excite the
vibrations. We have already pointed out that some important features of the forcing
depend on properties of the oscillatory fields related to the finite extent of the film,
but these features can be easily taken into account in the simplified forms of G and L.

Equations (3.12) are rewritten in non-dimensional form by scaling (x, t, es, vs) with
(l, l/vc, ec, vc), where l is the spatial period of the flow, the same in both horizontal

directions, ec is a characteristic thickness, and vc =
[
2c/ρ(ec + k)

]1/2
. In these variables,

a2
s = K(1+K)/(e+K), with K = k/ec, and the non-dimensional parameters Re = vcl/ν

and N = νs/ecν appear. Parameter values K = N = 1 and Re = 500 are chosen unless
otherwise noted. The non-dimensional equations are discretized using a second-order
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Figure 1. Solution of (3.12) with L = es∇ΦL
and G = 0.2 (∂Φ

L
/∂y,−∂Φ

L
/∂x), where

Φ
L

= 0.5 sin(2πx) sin(2πy). Plotted are six equispaced contours of es between 0.15 and 2.02 (dotted),
six contours of the vorticity (ωs) between −20 and 10 (solid for ωs > 0 and dashed for ωs < 0), and
velocity arrows.

finite difference scheme with artificial viscosity, and marched in time with a fourth-
order Runge–Kutta method; see Hirsch (1990).

A number of computations have been carried out with different forcing terms (non-
dimensionalized with ecv

2
c /l). The large potential forcing L1 = es∇ΦL

was represented
using Φ

L
= A sin(2πmx) sin(2πny), with A = 0.5 and m = n = 1 in most of the

cases. As was discussed in § 3.3, this forcing does not induce any motion by itself,
but leads to a spatial thickness variation that enables or enhances the action of other
terms. Moreover, it is assumed that the potential forcing may also approximately
simulate thickness variations whose real origin is a variation of surface tension not
due to any quasi-steady forcing, a feature not included in our formulation. Thus,
in order to mimic the strong recirculations sometimes observed in variable thickness
regions around patches of black film (which, strictly, are outside the framework of the
present model), a non-potential forcing G = (∂Φ

G
/∂y,−∂Φ

G
/∂x), with Φ

G
= 0.2Φ

L
,

was added to L1. G is taken orthogonal to L1 because an additional G with a
component parallel to the larger forcing L1 generates only a weak perturbation to the
motion, one partially masked by L1. Contours of constant thickness (dotted) and of
vorticity (solid for ωs > 0 and dashed for ωs < 0), along with some velocity arrows,
are displayed in figure 1. The thickness is maximum in the ridge at the centre of the
figure and in four other ridges on the sides. These ridges connect passages of relatively
large thickness (in the first and third quadrants of the figure) and leave valleys of
small thickness (in the second and fourth quadrants). As can be seen, the clockwise
circulation around the two valleys is stronger than the counterclockwise circulation
around the two passages. Increasing f produces a time-periodic flow, with a thickness
maximum moving back and forth along each ridge. In the figure, four maxima would
converge alternatively onto the passages in the first and third quadrants and the
circulations would pulsate in counterphase.
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Figure 2. Solution of (3.12) with L = es∇ΦL
and G = ∇Φ

G
, where Φ

L
= 0.5 sin(2πx) sin(2πy) and

Φ
G

= 0.1 sin(2πx + π/2) sin(2πy + π/2). Plotted are eight equispaced contours of es between 0.44
and 5.83 (dotted), eight contours of the vorticity between −4 and 4 (solid for ωs > 0 and dashed
for ωs < 0), and velocity arrows.

The mechanism of volume plus surface forcing is illustrated in figure 2 for the same
Φ

L
of the previous case and Φ

G
= B sin(2πx+ π/2) sin(2πy + π/2), with B = 0.1. As

can be seen, four vortices of alternate signs appear around each of the two ‘bladders’
of large thickness on the main diagonal; two vortices with positive circulation at the
left and right and two with negative circulations above and below. Again the velocity
is higher outside the bladders than inside. The centres of the vortices are not far from
the extremes of the vorticity source term ∇e−1

s ×∇ΦG
, with es roughly proportional to

Φ
L
. Replacing Φ

G
with Φ2

G
the flow develops eight vortices around each bladder.

These configurations, in particular the one with four vortices per bladder which was
studied more intensively, proved fairly robust. No stability analysis has been carried
out, but all the velocity and thickness perturbations that were tried, including both
harmonics and sub-harmonics of the forcing, were observed to decay in time when
the values of A and B of the previous simulation were used. The stationary structure
becomes less stable when A is decreased. Decreasing A reduces the thickness variation
due to the potential forcing L1 and the strength of the vorticity source, but at the same
time renders the thickness variation due to the motion comparatively more important,
so the flow ceases to be pinned to specific locations on the film. A non-stationary flow
was setup by adding sub-harmonic perturbations, of wavelength equal to two non-
dimensional units, to the stationary flow with A = 0.2 and Re = 2000. The increase
of Re is required to keep viscous effects small, because the non-dimensional velocity
decreases rapidly with decreasing values of A. In the transient solution the peaks of
maximum thickness oscillate smoothly along the main diagonal of figure 2 whilst the
surrounding vortices suffer very large deformations. Moreover, the Marangoni waves
do not disappear with the present periodic boundary conditions, but instead lead to
fast oscillations that coexist with the slower evolution of the vorticity in the film.

As was mentioned in § 3.3 (case A), the governing equations reduce to a description
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Figure 3. Eight equispaced vorticity contours between −3 and +3 from the numerical solution of
(4.1) with 7682 Fourier modes. A thin shell of modes around |k| = 10 are forced with amplitude
0.05, and Re/(1 +N) = 5000 based on the r.m.s. velocity.

of two-dimensional incompressible flow when the velocities involved are much smaller
than the speed of Marangoni waves and only the small thickness variations due to
the motion of the liquid are present. In this case (3.12) can be rewritten in the
vorticity–stream function form

∇2ψs = −ωs, with (us, vs) =

(
∂ψs

∂y
,−∂ψs

∂x

)
,

∂ωs

∂t
+ vs · ∇ωs =

1 +N

Re
∇2ωs + Ω,

 (4.1)

where ωs = (∇ × vs)z = (∂vs/∂x − ∂us/∂y) is the vorticity and Ω = [∇× (G + L)]z .

Here the velocity has been non-dimensionalized with Ω
1/2
c l, where Ωc is a characteristic

value of the vorticity forcing term. Equations (4.1) were solved with a spectral method.
The stationary solution for Ω = sin(2πx) sin(2πy) and Re/(1 + N) = 500, consisting
of a lattice of counter-rotating vortices not very different from the ones of figure 2, is
unstable to sub-harmonic disturbances, which induce vortex pairings in a well-known
fashion (see, e.g., Batchelor 1969 and McWilliams 1990). The vorticity distribution for
Re/(1 + N) = 5000 (based on the resulting r.m.s. velocity) is shown in figure 3 after
about ten large eddy turn-over times, when several pairings have already occurred.
This computation was carried out with 7682 Fourier modes, a shell of modes around
|k| = 10 being isotropically forced with amplitude 0.05. The results resemble some of
the visualizations of Afenchenko et al. (1998) of thin large square films.

5. Conclusions
An analysis has been carried out of the quasi-steady streaming in a vibrated

horizontal soap film. The salient features of the oscillatory and quasi-steady flows are
recapitulated below.
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The air surrounding the film is often the vehicle transmitting the vibration from
the excitation source, and the inertia of this air is almost always important to the
dynamics of the oscillations. Stokes layers existing in the air on both sides of the
soap film transmit an oscillatory shear stress which causes oscillations of the liquid
tangent to the film in all but special cases characterized by a symmetry that prevents
the existence of such oscillatory stress. The amplitude of the tangential oscillation of
the liquid may be large if a Marangoni mode is excited by this means.

In general, the oscillatory velocity of the air at the outer edges of the Stokes layers
on the soap film will be neither parallel nor perpendicular to the film, but at an angle
that depends on the local position on the film. The component of this velocity normal
to the unperturbed film is continuous across the Stokes layers in first approximation,
and is equal to the velocity of the oscillatory deflection of the film. In turn, this
velocity is much larger than the velocity of the liquid tangent to the film, except
when a Marangoni mode resonates. Marangoni waves may of course be excited by
an oscillatory motion of the air everywhere tangent to the film, a type of excitation
that would not lead to flexural oscillations. This particular forcing would require
a specifically designed acoustic device. The analysis of § 3.3 applies to this type of
motion with the only modification that the deflection of the film, being zero, can no
longer be used as a measure of the amplitude of the air oscillation, and should be
replaced by A0 appearing in the paragraph following (3.5). Yet another possibility is
to excite Marangoni waves without recourse to the air, by vibrating the film support
frame tangentially to the film. The efficiency of this method, however, should be
expected to depend on the conditions of attachment of the film to its frame, and will
not be discussed here.

Due to the nonlinearity of the problem, the oscillation of the air generates a non-
oscillatory pressure variation that leads to a non-oscillatory normal force on the film.
This force, along with the weight of the liquid and another normal force generated
by nonlinear effects inside the liquid, are balanced by surface tension in a manner
that produces a non-oscillatory, quasi-steady deflection of the film.

A non-oscillatory motion of the liquid tangent to the film is induced by non-
oscillatory volume forcing due to nonlinear effects inside the liquid, and by non-
oscillatory surface shear stresses due to nonlinear effects in the Stokes layers in the
air. In addition, these layers and the ones on the solid walls confining the film in
a closed cavity induce a non-oscillatory flow in the air which exerts an extra shear
stress on the film. Explicit expressions for the forcing terms due to the liquid and the
Stokes layers in the air, in terms of the oscillatory velocities in both phases and the
oscillatory deflection of the film, are worked out. The stress due to the streaming of the
air, which depends on the geometrical configuration of the film and the surrounding
walls, is estimated.

Bulk forcing is larger than surface forcing when the excitation frequency is close to
the eigenfrequency of a Marangoni mode of the film. Then the former forcing leads
to a non-oscillatory liquid flow only in the presence of variations of the film thickness,
which may be due to the motion of the liquid or to other causes. If no Marangoni
mode resonates, a weaker motion is induced in the liquid both by volume and surface
forcing, which are not crucially dependent on the non-uniformity of film thickness.
Several possible ways in which the combined action of the different forcings may
induce vortex motion are identified, and three numerical simulations of the flow in
the liquid film are presented which rely on simplified forms of the forcing terms.

Owing to the complex rheology of soap films, it is likely that variations of thickness
exist in the soap film due to causes not accounted for in the present formulation, and
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in some cases such variations bear on the efficiency of the forcing to generate motion
in the liquid. In some of the simulations presented here, the necessary thickness
variations have been obtained by means of an exaggerated potential forcing.

The effect of an inclination of the film support frame to the horizontal is of interest.
After an initial transient, an inclined film reaches a nearly stationary state with a
thickness that decreases with upward distance (Couder et al. 1989). Subsequently the
film thins down due to marginal regeneration (Mysels, Shinoda & Frankel 1959),
but this process is probably too slow to matter much here. The influence of the
component of gravity tangent to the film on the flexural and Marangoni oscillations
comes through its contribution to the coefficients es and σs in (3.4) and (3.7). These
coefficients are determined by equations (3.12), which should be augmented by adding
a new term to L, equal to es times the projection of the gravitational acceleration
on the surface of the film. Equations (3.12) with this new forcing term alone would
give the evolution of the film toward the nearly stationary state mentioned above.
The characteristic time of this evolution may be similar to the characteristic time of
the quasi-steady streaming which equations (3.12) are intended to describe so that,
depending on the experimental set up, both processes could occur simultaneously.
Moreover, the relative thickness variation due to gravity in a sufficiently large inclined
film may be ∆es/es = O(1), in which case the ability of the other forcing terms to
generate vortical motions would be very much enhanced, as discussed in § 3.3.

We gratefully acknowledge the help of A. Pinelli and C. Vasco with the numerical
solution of (4.1). This work was partially supported by DGICYT grants PB95-0008
and PB97-0556, and by NASA grant NAG3-2152.
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